Missing Data in Interactive High-Dimensional Data Visualization

Article · December 1998
Source: CiteSeer

CITATIONS
24

READS
606

1 author:

Deborah F. Swayne
AT&T
55 PUBLICATIONS 1,907 CITATIONS

All content following this page was uploaded by Deborah F. Swayne on 16 April 2014.
The user has requested enhancement of the downloaded file.
Missing Data in Interactive High-Dimensional Data Visualization

Deborah F. Swayne1, Andreas Buja2

1Bellcore, 445 South Street, Room 2L-331, Box 1910, Morristown, NJ 07962-1910; dfs@bellcore.com
2AT&T Labs, Room 2C-261, 600 Mountain Avenue, Murray Hill, NJ 07974-0636; andreas@research.att.com, http://www.research.att.com/~andreas/

Summary

We describe techniques for the interactive exploratory analysis of multivariate data with missing values. The approach is to 1) provide trivial imputations such as fixed values, 2) accept multiple imputations computed elsewhere, and 3) provide a means for keeping track of the location of missing values in the data.

The techniques have two major uses: First, they support the exploration of missing values, their correlations across variables and their associations with the variables of interest. Second, the techniques support the investigation and comparison of precomputed imputation schemes: in particular, they can be used to informally diagnose the adequacy of imputations.

The techniques are illustrated with an implementation in the XGobi software.

\textbf{Keywords:} Missing values, imputation of missing values, data visualization, statistical graphics, interactive graphics, dynamic graphics, linked views, brushing, data rotations, grand tours, projection pursuit, parallel coordinate displays.
1 Introduction

Many data analysts have encountered a serious obstacle as they tried to use contemporary interactive dynamic graphics software, because such software usually makes no special provision for missing data. An exception is the work of Unwin et al. (1996) discussed in section 2 below.

For many data analysts, particularly in the field of biostatistics, a data set without missing values is a rarity. Furthermore, if the software doesn't usefully handle missing values, it certainly doesn't offer any help in investigating the questions specifically raised by the presence of missing data: How are the missing values distributed? Do the missing values affect our ability to infer structure among the variables of interest?

Figure 1: An XGobi window containing a displaying a scatterplot. Each plotted variable has missing values which have been replaced with a fixed imputed value at 20% below the variable range. The missing values for the horizontally plotted variable, AlkPhos, show up as points along a vertical line to the left of the main scatter; those for Albumin lie along a horizontal line below the scatter.

The simplest solution to cleaning up data with missing values for visualization is to remove all the incomplete cases. This is often not an option: Little is left to analyze when a majority or a critical subset of the data is incomplete. In addition, leaving out even small sets of missing can introduce
unacceptable bias when the presence of missing values is correlated with the variables of interest.

When dropping cases with missing values is not an option, analysts are likely to use some sort of imputation method, both for graphical and formal analysis.

In the simplest case, when using scatterplots, analysts may impute some fixed value purely as a graphical aid; for example, they may set each missing value to 20% below each variable's minimum. This approach allows pairwise scatterplots to be viewed without loss of information. As shown in figure 1, missing values in the horizontal or vertical variable are represented as points lying along a vertical or horizontal line, respectively. In such displays, it is possible to make effective use of many interactive techniques, such as linked brushing and linked identification. Techniques that do not work well, however, include projections of three or more variables, as in 3-D data rotations. In the latter, fixed values map the data with missing values onto artifactual 2-planes in 3-space, which obscure each other and the main point cloud.

When using more sophisticated model-based imputations, the analyst avoids the artifacts caused by imputation of fixed values. Two problems arise, however: 1) One loses track of the location of the missing values in the data, and 2) one is exposed to potentially inadequate imputations.

As a general solution to such problems, we propose that data visualization systems 1) provide trivial imputations such as fixed values, 2) accept multiple imputations computed elsewhere, and 3) provide a means for keeping track of the location of missing values in the data. These three capabilities open up much of the toolbox of interactive data visualization to data with missing values, both for examining missing value patterns and diagnosing imputations of missing values.

We will exemplify these capabilities with an implementation in the XGobi system.

2 Comparison of XGobi with MANET

In data visualization there has been a dearth of attention to the problems caused by missing values. The leading exception to this general trend is the work of Unwin et al. (1996), in particular the MANET system described therein. A comparison of MANET and XGobi is therefore of interest, in particular a comparison of their missing value features.

MANET and XGobi are strikingly different in design and intended data applications: MANET is written for the Macintosh environment, XGobi for the Unix/X11 environment; MANET is strongest for discrete data, XGobi for continuous data. The different strengths would suggest that the two systems should really be married; unfortunately, the different environments preclude this vision.

MANET provides a variety of linked views, such as scatterplots of pairs
of variables, boxplots, histograms, bar charts, mosaic plots, and geographic maps. These views are augmented with representations of data with missing values. For example, histograms will show an additional bar representing the frequency of missing values in the chosen variable; scatterplots will show dot plots below and to the left of the main plot, representing data with one value missing in the two variables.

By comparison, XGobi is designed as a projection engine for viewing point clouds, curves, wire meshes and discrete graphs in arbitrarily high dimensions by means of 2-D projection views. Lately, XGobi has acquired two kinds of auxiliary views: parallel coordinate displays and textual displays of case label lists. XGobi’s views preserve the identity of individual cases (at least in principle). Views are linked for color brushing of points and lines as well as glyph brushing and labeling of points.

XGobi handles missing values in a way that is consistent with the idea of projecting high-dimensional points: It uses imputations to turn cases with missing values into valid points in high-dimensional space, but it keeps track of the locations of imputed values.

3 Exploratory graphical methods for missing data

To start, we need to state the obvious: The information about the location of missing values is itself multivariate — different cases have missing values in different sets of variables. It is therefore necessary to think of the missing value information as a shadow dataset of the same dimensionality as the main dataset, but consisting of binary indicators of “missingness” of data values. This may amount to a binary data matrix of zeros and ones where ones indicate missing values. We call this matrix the “missing value shadow”.

3.1 Two windows: recorded data and “missingness” data

In order to explore the data and their missing value shadow, it is natural to display each in a separate window. In the main window, we show the data with missing values replaced by some fixed or imputed values. In the shadow window, we show our binary indicators. Although it may seem unnatural, we like to display binary data in scatterplots because scatterplots preserve case identity in a natural way; by contrast, histograms and other aggregating presentations visualize groups rather than individual cases. When using scatterplots to present binary data, it is natural to spread the points so as to avoid multiple overplotting. We achieve this by adding small random numbers to the zeros and ones. The result is a plot like the rightmost plot in figure 2. The data fall into four square clusters, indicating presence and “missingness” of values for the two selected variables: For instance, the top right cluster consists of the cases for which both variables have missing values, and the
lower right cluster shows the cases for which the horizontal variable value is missing but the vertical variable value is present.

Figure 2: Two linked XGobi windows. The leftmost window shows a view of the data: a jittered dotplot of Sex. The rightmost window contains a jittered scatterplot of the missing value indicators for two other variables, Albumin vs. AlkPhos. We are brushing the square cluster representing cases for which both variables have missing values (high levels of both missing value indicators). We note that these cases represent only male subjects (low level of Sex).

Shadow plots of missing value indicators give us a quick appreciation of various patterns: 1) The number of missing values for each variable can be visually examined by cycling through a series of single variable plots. 2) Correlations of missing values for pairs of variables can be found by cycling through pairwise variable plots. 3) Associations of missing values for three variables at a time can be examined with 3-D rotations; in this case, one sees eight clusters centered at the vertices of a cube. In 3-D, each of the four clusters in a two-variable plot divides into two, indicating cases where the third variable is present or missing, respectively. — Observe the following: All four possible missing value patterns (00, 01, 10, 11) in two variables can be interpreted as forming the vertices of a square; similarly all eight missing value patterns (000, 001, 010, 011, 100, 101, 110, 111) can be interpreted as forming the vertices of a cube in 3-space. The adventurous data analyst
may want to interpret the sixteen missing value patterns in four variables as vertices of a 4-cube in 4-space... Figure 3 shows an example.

3.2 Linking the recorded data and the “missingness” data

The next important question in an exploration of data with missing values is whether there are associations between missing values and variables in the dataset. Here the preservation of case identity, which was mentioned above, becomes critical. Recall that we have been talking about two windows: One displays the data, with missing values replaced by fixed or imputed values; the other displays the binary indicators of “missingness,” with plotted points spread for better viewing. In our approach, these two windows are linked across cases, where each case is represented by a point in each window. When we brush a point in one window, thereby changing its color or plotting symbol, the corresponding point in the other window responds in the same way. If we query a point in one window to display its case label (or more generally, to retrieve its case record), the associated point in the next window responds identically. This linking of windows depends on case identity being preserved in the same manner in both plots.

The ability to link these two plots across cases allows us to explore the association between missing values and the variables of interest. For example, we might find that cases with missing values on the variables X and Y tend to have high values on the variables U and V. This fact (if present) could be found by brushing the cases with missing values on X and Y in the shadow window, and searching the pairwise scatterplots in the main window. In the example shown in figure 2, we can see that cases for which both AlkPhos and Albumin have missing values represent exclusively male subjects.

3.3 Graphical exploration of imputation methods

The investigation of imputation schemes is supported by interactive selection from sets of precomputed imputations. We can compare imputations by selecting first one scheme and then another from a menu of possibilities. To compare imputation schemes side by side, more windows could be used, all of which could then be linked across cases.

Using rapid variable selection, the viewer can examine these imputations in large numbers of views. As a result, the viewer acquires an intuitive sense of the adequacy of the imputations, or the comparative merits if more than one imputation scheme was used.
4 How it works in the XGobi software

The techniques described in the previous section have been implemented in the XGobi software (Swayne, Cook and Buja 1996, Buja, Cook and Swayne 1996), and this section briefly describes the data files and user interactions used in the implementation.

First consider the case in which no missing values have been imputed. The missing values are represented in the input data file as “na” or “NA”. The XGobi software reads the data file, initially assigning some arbitrary fixed value to each missing data item. A couple of very simple assignments or imputations can then be performed using the software — the assignment of some fixed value or a value that is some percentage above the variable maximum; single imputation or single imputation that takes account of current brushing groups. For the random imputation schemes, each click of a button generates a new set of imputed points, so that the imputed points are easily visible.

The user can now click a button to launch a second XGobi process, which will display the missing value window: zeros (present) and ones (missing), randomly spread for better viewing. The degree of spread can be controlled with a scrollbar, and new random spreads can be readily recomputed as well.

Now linked brushing is used to explore the structure of the missing data: As described in the previous section, we brush the missings in the missing value XGobi window and see where they lie in the XGobi window displaying the data. In the example in figure 2, we are brushing the cluster representing cases for which both variables have missing values, and we note that those cases represent only male subjects.

If a set of imputed values has been calculated, they can certainly be used. It is still useful to distinguish between the recorded and imputed data. To use this approach, the missing entries in the data matrix are populated with the imputed values; a second file is created which contains nothing but zeros and ones. In this case, linked brushing can still be used to explore the structure of the missing data, and the rest of the graphical analysis can proceed exactly as if all the data were present.

This approach can also be used with censored data. In that case, the censored values would remain unaltered in the original data file, and the missing values file would consist of ones for censored values and zeros for uncensored values.

To investigate and compare imputation schemes, two additional data files are used: the first contains all the imputed values, one set after the other. The second file contains the names to be used to label the imputation methods. Now when an imputation scheme is selected from a menu in the XGobi process containing the data, the missing values are replaced with the imputed values determined by the chosen scheme.
5 Discussion

A major goal implicit in this work has been to make data with missing values accessible to existing powerful methods of interactive data visualization. These methods include linked brushing and identification in multiple views, and scaling, panning and data rotations in single views. In this paper we documented potential uses of linked brushing (as in figure 2) to explore missing value patterns and associations between missing values and the variables of interest. Other interactive data visualization methods can be equally useful and apply immediately in this approach.

We hope to have provided a useful adjunct to traditional methodology for missing value problems. We expect it to be quite useful for data exploration as well as for imputation diagnostics.

The XGobi software is freely available from StatLib at this URL:

http://lib.stat.cmu.edu/general/XGobi/

For more references on XGobi, visit the following (identical) web pages:

http://www.public.iastate.edu/~dicook/xgobi.html

References

